В последние десятилетия в мире бурно развивается новая прикладная область математики, специализирующаяся на искусственных нейронных сетях (ИС). Растущий интерес к НС объясняется их успешным применением в различных областях деятельности при решении задач классификации и прогнозирования. Такие характеристики НС, как возможность нелинейного моделирования и относительная простота реализации, делают их незаменимыми при решении сложнейших многомерных задач.
НС нелинейны по своей природе и представляют собой мощный метод моделирования, воспроизводящий сложные зависимости. На протяжении многих лет основным методом изучения функциональных зависимостей в большинстве областей являлся метод линейного моделирования с разработанным алгоритмом оптимизации. Однако там, где линейная аппроксимация неудовлетворительна и линейные модели работают плохо, основным инструментом становятся нейросетевые методы.
Довольно длительное время основной областью приложений НС был военно-промышленный комплекс. Однако широкие возможности решения банковских и финансовых задач привели к тому, что ряд крупных разработчиков НС занялся созданием систем, нацеленных на решение исключительно банковских проблем. Применительно к банковской сфере можно выделить следующие основные группы задач, решаемых посредством НС:
• прогнозирование временных рядов (курсов акций, валютных курсов ит.д.);
— анализ и выявление аномалий в поведении объекта (обнаружение злоупотреблений в сфере пластиковых карт);
• распознавание подписи клиента;
• классификация заемщиков в зависимости от значения кредит- ного риска.
Основным показателем кредитоспособности заемщика является его кредитный рейтинг. Процесс присвоения кредитного рейтинга заключается в переходе от группы показателей, в основном финансовых, к единственному интегрированному значению — рейтингу. Инструментом такого перехода в большинстве случаев служит уравнение линейной зависимости. При этом веса показателей, участвующих в расчете рейтинга, устанавливаются банками на субъективной основе. Такая практика, как уже отмечалось, искажает результаты анализа и чрезвычайно рискованна. Именно неудовлетворенность возможностями традиционных методов статистики и неплохие результаты, полученные в данной области с помощью ПС, позволяют сделать вывод о появлении нового инструмента оценки кредитоспособности заемщика. Некоторые считают, что мы переживаем период перехода от сравнительно слабого использования научных методов в банковской сфере к такому положению дел, когда научные методы будут определять сам характер банковского дела. При этом ключевая роль отводится использованию ПС.
В 1993 г. в Европе для изучения возможностей применения ПС при оценке кредитного риска была создана организация «Equifax Europe New Technology Club». Анализ существующих программных продуктов по ПС показал, что некоторые из них позволяют добиться гораздо более высоких результатов, чем в случае применения традиционных методов анализа.
В российской банковской практике НС почти не используются, а мировой опыт сосредоточен в области оценки кредитного риска по заемщикам — физическим лицам.
Применительно к анализу кредитоспособности заемщика обучение НС происходит следующим образом: имеется совокупность предприятий с уже присвоенными кредитными рейтингами. Этим рейтингам соответствуют значения количественных и качественных показателей, содержащиеся в кредитном досье. В процессе наблюдений НС вычисляет вес каждого показателя, учитывающегося при расчете кредитного рейтинга. Полученные значения весов корректируются до тех пор, пока рассчитываемые с помощью этих весов кредитные рейтинги всей исходной совокупности заемщиков не совпадут с заданными значениями. В этом случае ошибка обучения будет сведена к нулю, а НС воспроизведет точный тип связи между показателями деятельности заемщика и его кредитным рейтингом.